
50 The Delphi Magazine Issue 35

Delphi Meets COM: Part 8
All good things...
by Dave Jewell

All good things must come to an
end and, sadly, my contribu-

tion to the Delphi Meets COM series
is no exception. This is the final
instalment in my own introduction
to COM from the perspective of a
Delphi programmer. I’d like to take
this opportunity to thank all the
readers who emailed me to say
how much they appreciated the
series and especially to the gentle-
man who hoped that it would go on
for ever!

From a financial point of view,
the idea of this series going on for-
ever is certainly attractive, but the
truth of the matter is that I’m very
much a beginner to COM myself
and we’d soon end up scraping the
barrel of what I know about this
technology [Heaven help the rest of
us! Ed]. The good news is that I’m
passing you over into the capable
hands of Steve Teixeira, who will
be taking the reins from next
month and covering the more
advanced topics about which I feel
less than authoritative! Amongst
other things, Steve plans to cover

advanced automation, threading
models and DCOM. I’m sure that,
like me, you’ll find it fascinating
stuff.

Property Pages Continued
Last time round, I introduced the
idea of property pages within the
DAX framework and I promised
that this month I’d explain how to
create an association between the
properties of your ActiveX compo-
nent and the relevant VCL controls
on a property page.

Creating such an association is
very straightforward. If you exam-
ine the DeskProp unit (provided as
part of last month’s code and
updated this month) you’ll see that
the TDesktopProp object has a
couple of overridden methods
called UpdatePropertyPage and
UpdateObject. You don’t have to
override these methods, the code
generated by Delphi will automati-
cally do it for you. These routines
have to be overridden because a
property page would be useless
without custom implementations

of them both. Basically, the Update-
PropertyPage method transfers
custom property information from
the ActiveX component to the
property page whereas UpdateOb-
ject does the reverse, copying
property information from the
property page to the underlying
object.

UpdatePropertyPage is automati-
cally called when a property page
is first displayed and UpdateObject
is called when the property page is
dismissed. This raises an obvious
question: how do we ensure that
UpdateObject doesn’t get called if
the user dismisses the property
dialog using the Cancel button
rather than the OK or Apply but-
tons? The answer should be
equally obvious, we don’t! The DAX
framework takes care of all this
stuff for us, we don’t care which
button the user presses because
our overridden UpdateObject
method will only be called if OK or
Apply has been clicked.

Let’s follow through and finish
implementing the property dialog
for our somewhat whimsical desk-
top component. To begin with, you
need to decide what VCL control
types you’re going to use for each
property type in your control. For
example, you’ll almost certainly
use an edit box for modifying text
properties. If you’re modifying a
scalar property such as border
width, angle, or something along
those lines, Delphi offers a rich set
of ‘widgets’ for tweaking the value
of the property such as trackbars,
up/down spin buttons and so forth.
If you want to get some ideas for
how to implement property pages,
I’d recommend you take a look at
the property pages designed by
Ray Konopka, author of the excel-
lent Raize Components. Ray has
designed some excellent property
pages to go with his own controls
and, interestingly, he’s even used
his own components on those

➤ Figure 1: Here's one of the property pages from Ray Konopka's Raize
Components library The preview component is itself a live instance
of a TRzLabel and, of course, there's nothing to stop you from using
similar techniques in any ActiveX property pages which you author
with Delphi.

July 1998 The Delphi Magazine 51

➤ Figure 2: OK, so it's not as fancy as Ray's property editor, but it does
the job! This illustrates one possible approach for changing colour
value properties using a couple of TBitBtn components. Bear in mind
that the OK, Cancel and Apply buttons are not part of your 'form'
and are added by the DAX library framework.

same property pages. It might
sound a bit counter-intuitive, but
there’s nothing to stop you from
using your new-fangled slider con-
trol on a property page which sets
attributes of the same component
type. This technique is just as
applicable to ActiveX control
development as it is in straight VCL
work.

In the present case, we’ll look at
just two properties of our desktop
control, the text colour and text
background colour properties.
When editing colour values, it’s
nice to show (within the property
page) the current colour assign-
ments for the properties; it helps to
give visual confirmation that the
correct property is being modified.
Accordingly, I added a couple of
TBitBtn buttons to the property
page and used them to access a
standard colour dialog compo-
nent. Because Delphi’s button
wrapper controls (by which I mean
controls which wrap the Windows
API-level BUTTON class) don’t allow
you to modify the surface colour of
the button, I had to cheat slightly in
order to represent the currently
assigned colour values within the
button. To do this, I used the
Wingdings font to display the
button captions, and made each
caption out of a series of ‘n’ charac-
ters, which is represented as a
solid box in this font. With a rea-
sonably large font size, you can
change the colour of the button
by assigning to the button’s

Font.Color property. The effect is
as shown in Figure 2.

Listing 1 shows the complete
code for our property page dialog.
As you can see, the amount of code
to be written is very small, partly
because I’ve cheated (again!) and
used ForeColorClick as a common
event handler for both of the bit-
button controls. Based on what
we’ve discussed so far, the code
should be pretty straightforward.
There are just two points I want to
stress here. Firstly, be sure to only
access the underlying ActiveX con-
trol through OleObject which is a
property of the TPropertyPage class
from which your own property
page is derived. If you don’t go
through OleObject, then things
won’t work as advertised.

unit DeskProp;
interface
uses SysUtils, Windows, Messages, Classes, Graphics,
Controls, StdCtrls, ExtCtrls, Forms, ComServ, ComObj,
StdVcl, AxCtrls, Dialogs, ExpBtn, Buttons;

type
TDesktopProp = class(TPropertyPage)
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Bevel1: TBevel;
Label4: TLabel;
ColorDialog1: TColorDialog;
ForeColor: TBitBtn;
BackColor: TBitBtn;
procedure ForeColorClick(Sender: TObject);

private
protected
procedure UpdatePropertyPage; override;
procedure UpdateObject; override;

public
end;

const
Class_DesktopProp: TGUID =
'{C5B5EEE1-E9A7-11D1-8CDD-8D1116120B0F}';

implementation
{$R *.DFM}

procedure TDesktopProp.UpdatePropertyPage;
begin
{ Update your controls from OleObject }
ForeColor.Font.Color := OleObject.TextColor;
BackColor.Font.Color := OleObject.TextBackgroundColor;

end;
procedure TDesktopProp.UpdateObject;
begin
{ Update OleObject from your controls }
OleObject.TextColor := ForeColor.Font.Color;
OleObject.TextBackgroundColor := BackColor.Font.Color;

end;
procedure TDesktopProp.ForeColorClick(Sender: TObject);
begin
with Sender as TBitBtn do begin
ColorDialog1.Color := Font.Color;
if ColorDialog1.Execute then begin
Modified;
Font.Color := ColorDialog1.Color;

end;
end;

end;
initialization
TActiveXPropertyPageFactory.Create(
ComServer, TDesktopProp, Class_DesktopProp);

end.

➤ Listing 1

Secondly, and most importantly,
notice the all-important call to
Modified within the ForeColorClick
event handler. Once again, this is a
method of the TPropertyPage class.
It’s only by calling Modified that
the DAX library knows you’ve actu-
ally altered the value of some prop-
erty. DAX doesn’t know what user
interface you’re going to provide
for property editing and it there-
fore doesn’t know (for example)
whether or not the user clicked
Cancel or OK when the colour selec-
tion dialog appeared. It’s up to you
to call Modifiedwhen the user actu-
ally makes some property change.
If you don’t call Modified, then the
DAX library will assume no
changes have been made: it won’t
bother to enable the Apply button

52 The Delphi Magazine Issue 35

and any changes the user makes
will be politely ignored when the OK
button is clicked.

Creating ActiveX
Control Libraries
Although I’ve probably mentioned
this a while back, it needs to be
appreciated that an OCX file is just,
at the fundamental level, a Win-
dows dynamic link library. Most
users (and most developers!) tend
to think of an OCX file as containing
just a single control. However,
you’re at liberty to place multiple
ActiveX controls into a single OCX
file. In order to add a new control to
an existing OCX project, just open
the project, select New from the
File menu, and choose ActiveX
Control from the ActiveX page of
the object repository, it’s as simple
as that.

From the perspective of the
Delphi programmer, there are
some positive benefits to be had
from using this technique. First
and foremost, if you’re building
your controls ‘standalone’ (ie the
executables do not require any
Delphi runtime packages) then
you’ll save a great deal of disk
space by bundling multiple con-
trols into a single executable. This
is because only a single copy of the
necessary VCL and DAX runtime
code is required. Moreover, if
you’re planning to do things prop-
erly and automatically register
your components at install-time on
the end-user’s machine, you’ll only
have to make a single call to the
DllRegisterServer routine within
the OCX file. This means that com-
ponent registration will not only be
simpler, but it will also be faster
than would be the case if multiple
OCX files were involved. Finally, if
it becomes necessary to un-
register your control library, this
will also be simpler and faster than
would otherwise be the case.

Against this, there are some
obvious disadvantages. Firstly,
there’s the size of the resulting
OCX file. Both Delphi 3 and Delphi 4
provide a sample ActiveX library
project (it’s in the directory
Demos\ActiveX\DelCtrls) which
illustrates how to group a number
of the standard Delphi VCL

controls into a single large OCX
file. Under Delphi 4, the resulting
OCX file weighs in at just over a
megabyte! This is pretty big, but
perfectly acceptable for deploying
via CD. It isn’t, however, the sort of
thing that you’d want to download
over the internet; at least, not by
choice.

In actuality, when you bear in
mind that there are some 34 con-
trols in the project, the OCX file
isn’t that big. It averages out at
around 29Kb per control, which is
pretty good when you bear in mind
that you’ve got the VCL/DAX run-
time code in there as well. How-
ever, if any of the controls in the
library require revision, then
you’re forced to ship the entire
OCX file again.

There’s another, less obvious
disadvantage to putting multiple
controls into a single OCX file, but
it’s something that can easily be
rectified. As we discussed last
time, whenever you use the
ActiveX control wizard to create a
new control, it will automatically
include a new About unit into the
project. This unit contains nothing
more than a simple About box
signed by ‘Frank Borland’
(Hmmm... I wonder whether that
should be changed to Frank
Inprise? It doesn’t quite have the
same ring to it, does it?) and a small
amount of supporting code. In the
case of the aforementioned
DelCtrls project, you will end up
with no less than 34 identical
About forms, each of which is
invoked from one of 34 identical
units. This is obviously a very
wasteful, nonsensical situation.

It’s very easy to clean things up.
If you examine each of the imple-
mentation units of your ActiveX
control library, you’ll see that the
TActiveXControl class has a pro-
tected method called AboutBox. The
implementation code for this
method (generated by Delphi)
then calls a routine called

ShowXXXXAbout which is imple-
mented in the About unit. The sim-
plest way of tidying things up is to
write a single, centralised About
box procedure which determines
the type of associated control on-
the-fly and then adjusts the dis-
played form accordingly. For
example, here’s the AboutBox rou-
tine from Borland’s ActiveX wrap-
per for the trackbar control:

procedure TTrackBarX.AboutBox;
begin
ShowTrackBarXAbout;

End;

Now here it is after a little
tweaking:

➤ Figure 3: Here's what a 1Mb
OCX file looks like in action!
This is the result of building the
Borland-supplied DelCtrls OCX
and running it under Visual Basic.

July 1998 The Delphi Magazine 53

procedure TTrackBarX.AboutBox;
begin
ShowActiveXAbout (Self);

end;

In the second case, we’re calling a
generic About box procedure,
rather than one that’s tied to a spe-
cific control. Additionally, we’re
passing the control instance (a
derivative of TActiveXControl) to
the routine. This would enable the
generic code to determine what
control-specific information to dis-
play on the About form.

As an alternative, you could
always create your ActiveX con-
trols without an About box (by
leaving the About box checkbox
unchecked in the ActiveX control
wizard) and then manually add the
necessary About box code your-
self. However, I’d tend to discour-
age such an approach because it’s
error prone. The only thing that
determines whether or not a con-
trol has an About box is the pres-
ence of the AboutBox method in the
control object. If you wanted to
add an About box after the ActiveX
control wizard has done its stuff,
you’d have to edit the type library.

Delphi 4 Goodies
I can’t resist finishing this article
without saying a little about the
increasing amount of COM sup-
port being built into the Delphi IDE
itself. Regular readers of my Beat-
ing the System column will know
that I devoted two or three months
to a discussion of the undocu-
mented LibIntf unit, information
which (to the best of my knowl-
edge) has never been published
elsewhere.

While digging around in the guts
of the Delphi 3 IDE, I discovered
that there were traces of COM-
patibility (for want of a better
word!) built into some parts of the
IDE itself. For example, there’s an
undocumented, and largely unim-
plemented, COM interface to the
internal TLibAppBuilder which pro-
vides access to the number of
designer forms currently open,
and to the forms themselves. At
the time, I pondered whether this
was a vestige of some failed
attempt at a COM-based Open

Tools API, or whether it was a hint
at things to come?

Having recently got my hands on
a release candidate of Delphi 4, I
can now reveal that it appears to
be the latter. In other words,
Inprise seem to be moving towards
a much more COM-based
approach for accessing the IDE
internals, a fact which will be sig-
nificant to anyone who wants to
write IDE add-ons. Although the
original interface is still there,
many new COM interfaces have
been added to a new unit called
BORIDE.PAS which lives in the same
directory as the other elements of
the Open Tools API.

Inprise seem to be drawing a dis-
tinction between the Open Tools
API on the one hand and what they
call the NTA (Native Tools API) on
the other. Different interface
names are labelled as either
TNTAxxxx or TOTAxxxx according to
which category they belong to.
The code fragment in Listing 2 is
typical of what I’m talking about.
This is an interface declaration
which encapsulates the IDE’s
design-time form editor. As you
can see, there are facilities for find-
ing a component by name, deter-
mining how many components on
the form are selected, retrieving
individual components from the
current selection, and so on. This
interface also provides support for
creating new components on a
form, with the specified size, posi-
tion and type name. Presumably
the Container argument to Create-
Component allows you to program-
matically add a component to
some pre-existing container such
as a TPanel, or whatever. The Get-
FormResource allows the contents
of a form to be copied to a stream.

At the moment, there is very
little to go on, and I’ve established
that none of the quoted GUIDs

IOTAFormEditor = interface(IOTAEditor)
['{F17A7BD2-E07D-11D1-AB0B-00C04FB16FB3}']
{ Return the form editor root component }
function GetRootComponent: IOTAComponent;
function FindComponent(const Name: string): IOTAComponent;
function GetComponentFromHandle(ComponentHandle: TOTAHandle): IOTAComponent;
function GetSelCount: Integer;
function GetSelComponent(Index: Integer): IOTAComponent;
function GetCreateParent: IOTAComponent;
function CreateComponent(const Container: IOTAComponent;
const TypeName: string; X, Y, W, H: Integer): IOTAComponent;

procedure GetFormResource(const Stream: IStream);
end;

➤ Listing 2

appear to have been entered into
the system registry on my
machine, so it will be interesting to
see how all this is implemented.
Exciting times ahead! The only
thing one can say with some cer-
tainty is that this represents yet
another way in which the all-
pervasive COM technology is
intruding into the life of every
developer, and that’s a very good
reason why you should continue
to read this series.

I’d like to conclude by recom-
mending a recently published
COM programming book called
Essential COM. This book, pub-
lished by Addison-Wesley and
written by Don Box (ISBN: 0-201-
63446-5), is probably one of the
most readable introductions to
COM that I’ve seen. Don is an
acknowledged expert on COM and
he takes you from the basics right
through to the most intricate
details, but always in a very read-
able, and often amusing, manner.
The only problem with the book
(from a Delphi standpoint) is that
everything is written from the per-
spective of a C++ developer, and all
the code fragments are written in
that language. If you’re reasonably
familiar with C++, you’ll get an
excellent grounding in COM and if
nothing else you’ll readily appreci-
ate what an excellent job Inprise
have done in hiding the nasty
details away behind the scenes.

Dave Jewell is a freelance consult-
ant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
Dave@HexManiac.com

	Property Pages Continued
	Creating ActiveX Control Libraries
	Delphi 4 Goodies

